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Homoconjugated dienes can be rearranged into conjugated 
1,3-dienes in the presence of SO2 via ene reactions.12 In the case 
of norbornadiene (1), which cannot undergo ene reactions with 
SO2, De Lucchi and Lucchini3 reported that it adds to SO2 in a 
(OJ2, + ir2s + ir2,) fashion4 to give the corresponding sulfolane 
2. In our hands, mixtures of 1 and SO2 led only to polymeric 
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material, unless 2,6-di-fert-butyl-p-cresol was added to the 
reaction mixture (33% yield of 2 after 2 days at 25 0C). We 
report here that the homocheletropic addition of SO2 is not 
restricted only to norbornadiene and that it can compete with the 
usual cheletropic addition («2, + 7r4,)4 when SO2 is allowed to 
react with polyenes containing 1,3-diene as well as 1,4-diene 
moieties.5 

When 3,3-dimethylpenta-1,4-diene (3)6 was mixed with 12-
13 equiv of SO2 in CH2Cl2, an 81% yield of sulfolane 47 was 
obtained after 8 days at 23 0C. Kinetic measurements gave a 
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second-order rate constant Ic3 (296 K) = 1.51 X 10~7 ± 1.3 X 1(H> 
dm3 moH s_1 for reaction 3 + SO2 -» 4. In the presence of CF3-
COOH (0.6 equiv) or BF3-Et2O (0.8 equiv), the rate constants 
Ai3(CF3COOH, 296 K) = 2.8 X 10~7 ± 8.7 X 10-» dm3 moH s"1 

and fc3(BF3-Et20, 298 K) = 7.26 X IO-7 ± 8.7 X 10"» dm3 moh1 

s_1, respectively, were measured. This relatively weak accelerating 
effect due to the protic or Lewis acid sharply contrasts with the 
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strong acid catalytic effect observed for the hetero-Diels-Alder 
additions of SO2 to simple 1,3-dienes at low temperature.8 The 
rate of the homocheletropic addition 3 + SO2 -* 4 was not affected 
by the presence of a radical scavenger such as 2,6-di-fevf-butyl-
p-cresol, thus ruling out the hypothesis that this reaction implies 
the formation of radicals or diradicals in the rate-determining 
step. 

When 2,3,5,6-tetramethylidenebicyclo[2.2.1]heptane (5)9-10 

was mixed with SO2 (purified on alkaline alumina (I)) in CD2Cl2 
(sealed NMR tube, C6H6 as internal reference), the sulfolane 61' 
was formed as a single product at-20°C(Schemel). A second-
order rate constant /fc5(253 K) = 1.59 X IO"5 ± 2.6 X IO"7 dm3 

moH S-1 was measured. At O ° C, 6 underwent slow cycloreversion 
into 5 + SO2 and then formed sulfolene 7.12 In this case, the 
homocheletropic addition 5 + SO2 -* 6 is kinetically favored but 
thermodynamically disfavored compared with the cheletropic 
addition 5 + SO2 - • 7. At higher temperatures, 6 and 7 were 
equilibrated with tetraene 5, showing that 6 and 7 had similar 
stabilities (ratio of 6/7, 1:4). 

When 2,3,5,6-tetramethylidene-7-oxabicyclo[2.2.1]heptane 
(8)io,i3,i4 w a s mixed wjtn a large excess of SO2, no product 9 
resulting from a homocheletropic addition could be detected 
between -30 0C and 30 0C. Above -10 0C, slow formation of 
sulfolene IO15 was observed. 
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Between -40 0C and 25 "C, SO2 was added to 5,6,7,8-tetra-
methylidenebicyclo[2.2.2]oct-2-ene (H)10-16 to give a 1:1 mix­
ture of sulfolane 1217 and sulfolene 13.18 This product ratio and 
the rate of this reaction (Jtn(253 K) = 4.20 X 10"6 ± 6.3 X 10-« 
dm3 mol-1 s"1) were not affected significantly by the presence of 
2,6-di-tert-butyl-p-cresol or CF3COOH. Above 25 0C, 12 was 
slowly isomerized into 13 via homocheletropic elimination, giving 
11 + SO2, which underwent cheletropic addition to 13,13 being 
more stable than 12. Heating of 13 above 100 0C led to 
elimination of SO2 and recovery of pentaene 11. In contrast, 
tetraene 1410'16 did not to give any trace of the expected sulfolane 
15 when treated with various amounts of SO2 between -40 0C 
and 40 0C. The sulfolene 16 was formed instead (Jt M (253 K) 
= 1.75 X IO"5 ± 5.5 X 10-7 dm3 mol"1 S"1), which added, above 
-20 0C, a second equivalent of SO2 to give the bis-sulfolene 20.19 

Below -65 0C, 14 was equilibrated slowly with a 3:2 mixture of 
two diastereomeric sultines resulting from the hetero-Diels-Alder 
addition of SO2.

8 

In contrast with the facile reaction 16 + SO2 -» 20, no trace 
of the corresponding bis-sulfolenes 17,18, and 19 resulting from 
the cheletropic additions OfSO2 to 7,10, and 13 could be detected 
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between 00C and 1000C when polyenes 5,8, and 11, respectively, 
were allowed to react with SO2 for several days. This is probably 
due to the fact that the corresponding bis-sulfolenes 17,18, and 
19 are unstable above 0 0C with respect to the products of 
cheletropic elimination because of the extra strain of bicyclo-
[2.2.1]hepta-2,5-diene (17), 7-oxabicyclo[2.2.1]hepta-2,5-diene 
(18), and barrelene systems (19) compared with bicyclo[2.2.2]-
octa-2,5-diene derivatives such as 20.10,20 

The homocheletropic additions 5 + SO2 -* 6 and 11 + SO2 
-* 12 (occurring at -20 0C) were significantly faster than reaction 
3 + SO2 - • 4 (occurring at 20 0C). This might be explained in 
terms of an electronic factor: the olefinic moieties in polyenes 
5 and 11 being part of s - c/5-butadiene units are more polarizable 
thanthoseof thesimple l,4-diene3. Differential electronic effects 
could also be responsible for the competition between the 
cheletropic and homocheletropic additions of SO2 to polyenes 5, 
8, U, and 14. Alternatively, geometrical factors such as the 
angle between the two reacting olefinic moieties and the distance 
between them could also be decisive. 

Work is underway in our laboratory to put these hypotheses 
on firmer ground. For the moment it is interesting to realize that 
a simple compound such as SO2 has a wealth of chemistry to 
offer as a cycloaddend. 
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42.7 (d, ' / (CH) = 140 Hz, C(I), C(7)), 26.1 (t, ' / (CH) = 134 Hz, C(IO), 
C(I I)). Data for 20: mp > 145 0C dec; 'H NMR (250 MHz, CD3CN) 8H 
3.87 (br s, 8 H, H(3), H(5), H(9), H(I I)), 3.70 (br s, 2 H, H(I), H(7)), 1.52 
(s, 4 H, H(13), H(14)); '3C NMR (100.61 MHz, CD3CN) 8C 135.3 (s, C(2), 
C(6), C(8), C(12)), 57.8 (t, ' / (CH) • 145 Hz, C(3), C(5), C(9), C(Il)), 
38.5 (d, '/(C1H) • 144 Hz1 C(I)1 C(7)), 25.6 (t, '/(C1H) - 128 Hz1 C(13), 
C(14)). 
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